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Small nuclear power systems could provide electricity to power probes, landers, rovers, 
or communication repeaters for space science and exploration missions
• Would convert heat to electricity for powering spacecraft sensors and communication

• Fractional GPHS (General Purpose Heat Source) output: ~60 watts thermal output (good for 10-Watt Generator)

• LWRHU (Light Weight Radioisotope Heater Unit, often called RHU) ~1 watt thermal output for each heater unit

Low Power RPS for Small Spacecraft

GRC Development Goals
• Sufficient power for small spacecraft functions

• Long-life and low degradation to ensure sufficient power at EOM

• Robust to critical environments (vibration, shock, constant
acceleration, radiation, etc.)

• Thermal capability and high efficiency

• Operates in vacuum or atmosphere

Dynamic Power Conversion System Efficiency
• 1 watt generator efficiency projected to be 12-13%

• 10 watt generator efficiency projected to be 16% Conceptualization of Seismic Monitoring
Stations Being Deployed from Rover

JPL Pub 04-10, Sept-2004: 51 mission concepts, 14 RHU-based, 13 fractional-GPH
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• Subassemblies under development include convertor, controller, and insulation

• Need to formalize requirements later this year (Fundamental Research Project to help)

• Goals are based on existing DPC requirements

GRC 1-W Dynamic RPS Concept - Goals

Category Goals Current Best 
Estimate

Design life 20 years 20 years

Heat input 7 to 8 watts to convertor 8 watts

Power output At least 1 We DC from controller > 1 We DC

Heat source surface temperature TBD < 450 ºC 

Stirling hot-side temperature 325 to 375 ºC 350 ºC

Stirling cold-side temperature -100 to 50 ºC -100 to 50 ºC

Robustness Overstroke tolerant

Random vibration level TBD

Environment vacuum or atmosphere vacuum and atmosphere

Constant acceleration 20 g 19 g
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In-house dynamic RPS from 1-10 We DC power output
• Demonstrate practicality of 1 watt power level by maturing subassemblies

and interfaces

• Complete engine design at 10 watts power output (62 Wth heat source)

Initial Demonstration 
• Controller breadboard
• Free-piston Stirling convertor
• Multi-layered metal foil insulation (using Stirling thermal simulator)

Increased Fidelity 
• Controller brassboard fabrication and test
• Stirling convertor durability testing

System Testing 
• Stirling convertor + controller
• Electrically heated prototype system (includes insulation)

Technology Development at GRC
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Pneumatic Testing

Controller Testing

Insulation Testing (at 
vendor)
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GRC 1-W Dynamic RPS Concept

Electrical 
Controller

Stirling 
Engine

Multi-Layer 
Metal Insulation

Heat 
Source

Linear 
Alternator

Stirling Convertor

Radiative Coupling Heat Rejection Flange
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in-line concept for 
Stirling convertor 
not yet complete

Table 1: smal/STEP Concept Characteristics 
,--------------------------------------------------1 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
[ _ - - - - - - - - - - - - ----- - - - - - - - - - - - - --- - - - - - - - - - - - - ----- I 

Item smallSTEP 

Nuclear Fuel 8 LWRHU 

Thermal Inventory 8 watts (thermal) 
Beginning of Life ,(SOL) -
when the RPS is fueled 

Beginning of Mission 1 watt 
(BOM) Power - up to 3 

vears after fuelinq 
End Of Design Life 0.83 watts 

(EODL) Power - 14 years 
after BOM 

Power Conversion Stirling Converter 

Environment Multi-Miss ion 
Capable 

Voltage Range 4 to 5 V DC 

Degradation Rate 1.2%/yr 

Efficiency 13% 

Mass (including 6 pounds (3 
controller) kilograms) 

Volume 4.3 inch 
(11 centimeter) 
X 12.5 inch (32 

centimeter) cube 
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Light Weight Radioisotope Heater Unit 
(LWRHU)
• Long history of use on many space missions for 

heating spacecraft electronics 

• Aeroshell designed to survive reentry into 
Earth’s atmosphere for safety

• Diameter: 1.0 inch, Length: 1.3 inch (1.1 watts 
of thermal energy at BOL)

Generator concept uses 8x LWRHU
• 8 Wth Heat to 1 We DC electrical power

GRC testing will use electric heaters 
to simulate the LWRHUs
• Designed to provide similar thermal gradients 

compared to LWRHU

• There are four resistance cartridge heater total, 
each one simulates two LWRHUs

Heat Source

LWRHU Assembly

LWRHU Simulator uses electric heaters

Welded 
wire bus

LWRHU 
volume

electric
heater

cross-section view Test Hardware

Graphite block
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Generator concept uses 8x LWRHU
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Objectives 
• High performance is critical to minimize losses

• Peregrine Falcon Corp. provided Multi-Layered Metal 
Insulation (MLMI) package in October 2018

• MLI design considerations

• 8 watts thermal input, targeted >90% efficient

• Evacuated to enable low thermal losses

• Lab unit allows disassembly for inspection

• Thermal simulator design considerations

• Reject 7 watts

• Radiation coupling to heat source

• Instrumented with TCs along the length to calculate 
heat transfer, also enables model comparison

• Efficiency is flat with achievable emissivity values

Insulation Design
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MLI Package

Thermal Analysis Study
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As-is
• Radiative coupling 

• No additional layers

• Heat source temperature = 643 C

• Stirling hot-end temperature = 450 C

Minor modification
• Compliant thermal interface

• Heat source temperature = 450 C

• Stirling hot-end temperature = 450 C

• Appears it could work for a 10-W DRPS with minor 
modification

Exploratory cases for 10-W DRPS
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Insulation Evolution
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0.83 watts 
Hot RHU Surlace 500 C 

Consistent Emissivities for 
20 Year Life of Generator 

Multilayer Insulation Overall Effective 
Thermal Conductivity-0.001 W/m-K 

Sink Temperatures: Microporous Insulation 
Case A: -270 C (Space) 
Case B: -50 C (Cold Mars) 
Case C: +50 C (Hot Mars) 

figure 1: MLMI in Cross Section 
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Convertor Modeling
Confidence in Predictions
• 1D Sage vs. 3D CFD 

• Modeled domain was truncated at the piston face and 
displacer rod (no seals, no bounce space, no displacer 
gas or radiation) 

• Sage connects fixed temperatures directly to ends of 
the displacer, which artificially elevates displacer 
temps and associated axial parasitic heat transfer 
losses, while Fluent model resolves complex thermal 
and fluid flow fields

• Sage assumes no motion by the displacer when 
resolving heat flux while Fluent resolves temperature 
gradients and heat flux by moving components and 
deforming gas volume meshes 

Codes agree well 
• The PV power output agree within 2%

• Indicated power predicted at 1.5 watts 
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Objectives
• Rectify AC power for load focused on controller design with generic load
• Provide 1 We DC on 5 Vdc bus for rechargeable battery system and sensors
• Charging battery enables house keeping power and periodic burst transmission of 

measured data for communication
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Controller Design

• Keep engine at a constant power level

• Shunt excess power when battery is fully charged and power is not 
required by the load

Stirlin,g 
converter 

sense 

AC to DC 
rectification 

House keeping 
supply 

Shunt 

Battery 

Transmitter 

Load power 
regulation 

RS422 to 
Controller vehicle or 

data in GSE 

Micro
processor 

Load 
Sensors 

c:::::J Cont roller hardware 

c:::::J Load hardware 

*optional ci rcuit if it 
proves to be energy 
efficient 
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Initial testing met the power output goals
• Demonstrated linear AC regulator controller using a MOSFET H-bridge 
• Analog circuit controlling FETs for AC to DC rectification and alternator current control to improve 

power factor 
• Load voltage monitoring allows for load control and shunting of unused power
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Controller Breadboard Testing

Value Ideal diode 
rectifier

Wave form 
smoothing

Alternator Voltage, Vp-
p

25.3 25.4

Alternator Power, We 1.37 1.34

Controller voltage, Vdc 11.7 11.5

Controller Power, We 1.11 1.22

Controller efficiency 80% 91%
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Component Testing 
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Flexure Testing 
• FEA predicted static stress @deflection, corresponding stress noted for each 

amplitude to develop S-N curve (fatigue stress vs. number of cycles to failure)

• Both flexure designs easily exceeded 10 million cycles operating at 100 Hz, high end 
of typical range used as threshold for identifying transition from high cycle fatigue to 
infinite life. The boundary between the finite-life and infinite-life regimes, or endurance 
limit, lies somewhere between 1 million and 10 million cycles for steels

• Displacer and piston flexures demonstrated over 100 million cycles with margin over 
the nominal amplitude without fracture 

• Sufficient confidence our test effort will be failure free

Alternator Testing 
• Successfully demonstrated (2x) styles of 1-watt moving coil linear alternators, 

(motored up to ~4 mm amplitude)

• Successfully demonstrated conduction path across flexure stacks and connections

• Demonstrated non-contacting operation of power piston

• Completed alternator design in concert with controller design in order to tune the motor 
inductance and ensure flight rated components (including capacitors)
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Convertor Description
Design Description 

• Split-Stirling, gas duct between engine and alternator 
compression space

• Moving coil alternator

• Gap regenerator

• Flexure bearings for piston and displacer

• Laboratory design emphasized flexibility (not low mass)

Parameters
• Hot-end temperature, 350 ºC

• Cold-end temperature, 0-50 ºC

• Operating frequency, 100 Hz

• Operating pressure, 110 psig

• Pressure amplitude, 13 psig

• Piston amplitude, 4.5 mm 

• Displacer amplitude, 2 mm

Lab Test Setup
(insulation not shown)

Alternator

Cartridge heater

Heat rejection loop

Gas duct

Engine heater head
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Measurements
• Hot and cold end thermocouples (8x)

• Dynamic CS pressure transducer (1x)

• Mean pressure transducer (1x)

• Hall effect sensors (2x)

• Power meter (power, voltage, current) for electrical 
heat input and alternator power output

Fabrication and Testing
• Fabrication is complete 

• Assembly is complete

• Pneumatic testing is complete

• Motor tests have started, some iterative changes are 
in progress

Convertor Instrumentation
Hot-end Temperature

Cold-end Temperature

Dynamic Pressure

Mean Pressure

Hall Effect Sensor

Hall Effect Sensor

Electric power input

Electric power output
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2019 NETS (Y. Lee, et al.)
• JPL’s Small RPS A-Team Study focused on mission 

concepts for (1 mWe to 40 We)

• Concepts were generated and reviewed as part of a JPL 
Innovation Foundry Architecture Team (A-Team) study

• Provided recommendations to RPS Program 
development activities

• Power, Mass, and Size (of interest for us)

• 1 to 10 watts

• 2.5 to 4 kg

• 3000 cm3 to 4000 cm3 (3U to 4U)

• Best fit for GRC 1-W DRPS
1. Lunar Geophysical Network (10 We)

2. Pluto Lander (10 We)

3. Magnetosphere Study Fleet (1.5 We)

An Exploration of Mission Concepts That Could Utilize 
Small RPS
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Mission Concepts Power Spectrum 

Lmw. 1omw. 100mW. 10w. 40W. 

Mission Concepts Mass Spectrum 

0.5 kg 1kg 1.5 kg 2 kg 3 kg 3.5 kg 4 kg 4.5 kg 

1000 cm• (•1u •) 6000 cm• ("6u• i 12000 cm:1r12U") 
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Conclusion
• Small RPS concepts are being studied by NASA for use on small spacecraft

• GRC is working toward demonstration of a 1-watt dynamic RPS
• Testing is in progress on all subassemblies (convertor, controller, insulation) 

• Completed controller breadboard design and test, Brassboard is next

• Completed convertor assembly and alignment of moving components, 1st operation is imminent

• Completed insulation fabrication, test setup in progress

• GRC is also working on a paper design of 10-watt dynamic RPS

Small Stirling Technology Exploration Power or “smallSTEP” 
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Special thanks to:
• RPS Program and Project Management
• 1W Stirling Team

• Scott Wilson (Technical Lead)
• Nick Schifer (Convertor Fabrication & Test)
• Steve Geng (Alternator Design & Test)
• Mike Casciani (Controller Design & Test)
• Daniel Goodell (Thermal Management Design & Test)
• Terry Reid (Advanced Modeling)
• Barry Penswick (Engine Modeling & Design)
• Paul Schmitz (Requirements)
• Roy Tew (Sage Analysis)

Presenter
Presentation Notes
Takes a big team to make a small Stirling!
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